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The work presented in this paper describes the application of a multiblock gridding strategy to
the solution of aerodynamic design optimization problems involving complex configurations. The
design process is parallelized using the MPI (Message Passing Interface) Standard such that it
can be efficiently run on a variety of distributed memory systems ranging from traditional parallel
computers to networks of workstations. Substantial improvements to the parallel performance of
the baseline method are presented, with particular attention to their impact on the scalability of
the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of
lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted
nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with

" both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solu-
tion and the results are compared. These sample calculations establish the feasibility of efficient
aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow
model. There still exists, however, the need for detailed studies of the importance of a true viscous
adjoint method which holds the promise of tackling the minimization of not only the wave and
induced components of drag, but also the viscous drag.
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INTRODUCTION

During the course of the last few years, there has
been a concentrated effort within our group to de-
velop fast and efficient methods for the solution of
viscous fluid flows over complex aircraft configura-
tions. The path to achieve this goal has seen nu-
merous improvements in convergence acceleration
techniques (multigrid, implicit residual averaging),
viscous discretization algorithms, higher order dis-
sipation schemes for shock capturing and boundary
layer resolution, unstructured and multiblock grid
approaches, and parallel implementations based on
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domain decomposition ideas [30, 50, 43, 49, 2, 1].
The combination of all these factors has resulted in
a variety of flow solvers that adhere to the highest
standards of accuracy and efficiency.

Although direct flow analysis of existing configu-
rations has in the past provided the aircraft de-
signer with invaluable information to overcome a
wide range of problems, there is the need for Com-
putational Fluid Dynamics (CFD) methods which,
in addition, provide information about geometry
changes that are necessary to improve an existing
design with respect to a pre-specified figure of merit.
It is within this framework where the utilization of
fast solution techniques is of utmost importance.

Most effective -aerodynamic optimization methods
are based on the calculation of the derivatives of the
figure of merit with respect to the design variables
in the problem. Unfortunately, the calculation of
these derivatives using the straightforward method



of finite differencing is usually prohibitively expen-
sive. While it is possible to perform aerodynamic
optimization on a limited class of problems using
the finite difference approach [19, 18, 51, 44, 42,
large scale problems that are of the greatest engi-
neering interest do not belong to this class. An al-
ternative technique first suggested for problems in-
volving partial differential equations by Lions [40],
and extended for the treatment of compressible flow
by Jameson [23, 24] is the control theory approach.
This methodology employs control theory applied to
systems governed by partial differential equations to
derive a co-state or adjoint system of equations. This
adjoint equation has similar complexity to the flow
solution, and allows the calculation of the complete
gradient of the figure of merit with a cost which is
essentially independent of the number of design vari-
ables in the problem.

The computational cost of performing viscous based
design is considerably larger than for design using
the Euler equations because: a) the number of mesh
points must be increased by a factor of about five to
resolve boundary layers and wakes, b) there is the
additional cost of computing the viscous terms and a
turbulence model, and c) Navier-Stokes calculations
generally converge much more slowly than Euler so-
lutions because of stiffness arising from the highly
stretched boundary layer cells. Therefore, the com-
putational feasibility of viscous design hinges on the
development of a rapidly convergent Navier—Stokes
flow solver which is able to handle complex configu-
rations and is efficiently implemented on the current
generation of distributed memory architectures.

With this in mind, the logical approach to the solu-
tion of the aerodynamic design problem is to link to-
gether fast iterative solvers and the adjoint solution
methodology in order to produce a computational
method which can address the needs of the aircraft
designer: high solution accuracy, fast turnaround,
geometric complexity, and automated shape design.
Even with the use of an adjoint solver, large scale
design problems using the Navier-Stokes equations
that are considered in this work require massive com-
putational resources. Future work will place even
more extreme demands on the computational power
needed. Therefore, it was decided to attempt to ex-
ploit the power of emerging distributed memory par-
allel computers with efficient standardized message-
passing implementations. Thus, much emphasis in
this paper has been placed, not only on demonstrat-
ing the viability of performing automatic designs on
complex configurations, but also on minimizing the
communication overhead incurred by mapping the
method onto either parallel computers or clusters of
workstations.

In this paper we present one of the possible varia-

tions of the adjoint based design technique for com-
plex geometries, where the flow and adjoint solvers
have been implemented using a multiblock strat-
egy. Both the Euler and Reynolds Averaged Navier-
Stokes equations are used to solve drag minimiza-
tion problems. In both circumstances, the adjoint
system solved to obtain the sensitivity of the fig-
ure of merit with respect to the design variables is
based on the inviscid equations only. The authors
feel that the effective use of a viscous adjoint in a re-
alistic design environment will require much further
development and validation work. Furthermore, the
approach presented here is a natural evolution of our
previous work [50, 43, 49] which had already been
extended to treat inviscid flows over complex config-
urations. The work directed towards the improve-
ment of the parallel performance of the method was
motivated by an interest in demonstrating the per-
formance of the method on computational platforms
which do not possess the bandwidth and latency that
is realizable on highly integrated parallel machines.

CONTROL_ THEORY FORMULATION
FOR SHAPE DESIGN

The presentation of the control theory approach to
optimal design is well documented elsewhere [23, 28],
and only a brief summary is given here.

The progress of the design procedure is measured in
terms of a cost function I, which could be, for exam-
ple, the drag coeflicient or the lift to drag ratio. For
the flow about an airfoil or wing, the aerodynamic
properties which define the cost function are func-
tions of the flow-field variables (w) and the physical
location of the boundary, which may be represented
by the function F, say. Then

I=I(wF),
and a change in F results in a change
oIT aI7

in the cost function. Using control theory, the gov-
erning equations of the flow field are introduced as a
constraint in such a way that the final expression for
the gradient does not require multiple fiow solutions.
This corresponds to eliminating éw from (1).

Suppose that the governing equation R which ex-
presses the dependence of w and F within the flow-
field domain D can be written as

R(w,F) =0. (2)

In our current work, R may be expressed by either
the Euler or Navier-Stokes equations. Then dw is
determined from the equation

0R = [—g—g] dw + [g—ﬁ] 0F =0. (3)



Next, introducing a Lagrange multiplier 4, we have
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the first term is eliminated, and we find that
8 = GoOF, (5)

where

)
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The advantage is that (5) is independent of dw, with
the result that the gradient of I with respect to an
arbitrary number of design variables can be deter-
mined without the need for additional flow-field eval-
uations. In the case that (2) is a partial differential
equation, the adjoint equation (4) is also a partial
differential equation and determination of the appro-
priate boundary conditions requires careful mathe-
matical treatment.

The computational cost of a single design cycle is
roughly equivalent to the cost of two flow solutions
since the the adjoint problem has similar complexity.
When the number of design variables becomes large,
the computational efficiency of the control theory
approach over traditional finite differencing strate-
gies, which require direct evaluation of the gradients
by individually varying each design variable and re-
computing the flow field, becomes compelling.

Once equation (5) is established, an improvement
can be made with a shape change in the direction of
the negative gradient

§F = -XG

where ) is positive, and small enough that the first
variation is an accurate estimate of 4I. Then

61 =-2g7¢ <0.

After making such a modification, the gradient can
be recalculated and the process repeated to follow a
path of descent until a minimum is reached. Varia-
tions on the optimization procedure which allow for
the treatment of structural and aerodynamic con-
straints can be readily incorporated in this approach.

MULTIBLOCK FLOW SOLVER

Multiblock strategy

FLO107-MB is a three-dimensional, multiblock, Eu-
ler and Navier-Stokes flow solver suitable for the so-
lution of external and internal flows around complex
configurations. The discretization of the governing
equations of the flow is accomplished using a cell-
centered finite volume method. The flow domain is
divided into a large number of small subdomains,
and the integral form of the conservation laws

0
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is applied to each subdomain. Here F is the flux
function which can include the viscous fluxes in the
case of the Navier-Stokes equations, w is the vec-
tor of flow variables, and dS is the directed sur-
face element of the boundary B of the domain D.
The use of the integral form has the advantage that
no assumption of the differentiability of the solu-
tion is implied, with the result that it remains a
valid statement for a subdomain containing shock
waves. In general the subdomains could be arbi-
trary, but in this work we use the hexahedral cells
of a multiblock body-conforming curvilinear mesh.
Discretizations of this type reduce to central dif-
ferences on a regular Cartesian grid, and in order
to eliminate possible odd-even decoupling modes al-
lowed by the discretization, some form of artificial
dissipation must be added. Moreover, when shock
waves are present, it is necessary to upwind the dis-
cretization to provide a non-oscillatory capture of
discontinuities. The current version of the multi-
block flow solver accomplishes this task using either
a switched scalar dissipation scheme or the more
sophisticated Convective Upstream Split Pressure
(CUSP) approach, coupled with an Essential Local
Extremum Diminishing (ELED) formulation. De-
tails on these techniques and an extensive validation
of the scheme for both inviscid and viscous flow, can
be found in [26, 27, 54].

In order to apply the finite volume technique to the
solution of flows around complex configurations, we
have chosen to implement a multiblock strategy. In a
multiblock environment, a series of structured blocks
of varying sizes is constructed such that these blocks
fill the complete space and conform to the surface
of the geometry of interest. This segmentation of
the complete domain into smaller blocks avoids the
topological problems present in constructing a grid
around complex configurations and multiply con-
nected regions. The general strategy in the solution
procedure of the multiblock flow solver is to con-
struct a halo of cells which surrounds each block and
contains information from cells in the neighboring
blocks. This halo of cells, when updated at appro-



priate times during the numerical procedure, allows
the flow solution inside each block to proceed inde-
pendently of the others.

This approach requires establishing the number and
location of halo cells adjacent to block boundaries
and constructing lists of halo cells and their inter-
nal counterparts in the global mesh. In our case,
we have chosen to carry out these setup procedures
as part of a pre-processing module. During the
pre-processing step, a two-level halo is constructed
around each block. The requirement of this double
halo results from the necessity to calculate all the
necessary fluxes for the internal cells of each block
without reference to additional cell locations outside
the block in question. In particular, the second dif-
ferences used for the third order dissipation terms
require the values of the flow variables in the two
neighboring cells on all sides of the cell in question.
As we will see later, this approach is at the heart of
the parallel implementation of the method.

The system of equations solved as well as the solu-
tion strategy follows that presented in many earlier
works [34, 22, 21]. The governing equations of the
flow may be written as

ow af,
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where it is convenient to denote the Cartesian coor-
dinates and velocity components by z;, 23, 23 and
U1, U2, Uz, and w and f; are defined as

p pu;
puy pu;uy + pdiy
w=1< pus p, fi=1<{ pujus+ pdip (7
pus puiuz + pos3
pE pu; H

with &;; being the Kronecker delta function. Note
that this definition of the flux functions f; corre-
sponds to the Euler equations. They can be ex-
panded to include the appropriate viscous terms
in the Reynolds Averaged Navier-Stokes equations
without modification to this discussion. Details of
the construction of these viscous fluxes are presented
in the following section. Also,

p=(7—1)p{E—%(U?)}, ®)
and

pH =pE +p (9)

where <y is the ratio of the specific heats. Consider
a transformation to coordinates &3, &, {3 where

9¢; oz; ]

Introduce scaled contravariant velocity components
as

Kij':[ ], J =det (K), K;:[

Ui = Qiju;

where
Q=JK™.
The Euler equations can now be written as
oW  OF;
— 4+ —=0 in D, 10
ot ' B m (10)
with
p pU;
pu1 pUiur + Qap
W=Jq puz ¢, Fi=Qifi =14 pUiuz + Qizp
pus pUiuz + Qiap
pE pU;:H

(11)

For the multiblock flow solver, the above notation
applies to each block in turn. The flow is thus deter-
mined as the steady-state solution to equation (10)
in all blocks, subject to the flow tangency or no-slip
conditions on solid boundary faces:

U,=0 onall Bg (12)
for flow tangency, or

Us, =0,i=1,2,3 onall Bg (13)

for no-slip boundary conditions. In this notation, 5
is 1, 2, or 3 depending on the direction that is nor-
mal to face Bg where a solid surface is indicated. At
the far field boundary faces, Bp, freestream condi-
tions are specified for incoming waves, while outgo-
ing waves are determined by the solution.

The time integration scheme follows that used in the
single block solver [34]. The solution proceeds by
performing the cell flux balance, updating the flow
variables, and smoothing the residuals at each stage
of the time-stepping scheme and at each level of the
multigrid cycle. The main difference in the inte-
gration strategy is the need to loop over all blocks
during each stage of the process. The use of the
double-halo configuration permits standard single-
block subroutines to be used, without modification,
for the computation of the flow field within each indi-
vidual block. This includes the single-block subrou-
tines for convective and dissipative flux discretiza-
tion, viscous discretization, multistage time step-
ping, and multigrid convergence acceleration.

The only difference between the integration strate-
gies is in the implementation of the residual aver-
aging technique. In the single-block solution strat-
egy, tridiagonal systems of equations are set up and
solved using flow information from the entire grid.
Thus, each residual is replaced by a weighted av-
erage of itself and the residuals of its neighbors in
the entire grid. In the multiblock strategy, the sup-
port for the residual smoothing is reduced to the ex-
tent of each block, in order to eliminate the need to



solve scalar tridiagonal systems spanning the blocks,
which would incur a penalty in communication costs.
Depending on the topology of the overall mesh, the
setup of tridiagonal systems that follow coordinate
lines may lose the physical interpretation that it had
in the single block implementation. This change has
no effect on the final converged solution, and in all
applications of the solver has not led to any reduc-
tion in the rate of convergence.

Viscous discretization

In order to include the viscous terms of the Navier-

Stokes equations into the spatial discretization

scheme it is necessary to approximate the velocity
U,

derivatives %ﬁ which constitute the stress tensor

oij. These derivatives may be evaluated by apply-
ing the Gauss formula to a control volume V with
boundary S:

Bu,-
v 0z;

dV=/uinde )
S

where n; is the outward normal. For a hexahedral
cell this gives

u; ny S, (14)

where T; is an estimate of the average of u; over the
face, n; is the jth component of the normal, and S
is the face area.

In a cell centered scheme, the integration is carried
out on a dual mesh obtained by connecting the cen-
ters of the computational cells in the original mesh.
This- process yields an approximation of the stress
tensor at the vertices of the original computational
mesh. Once the stress tensor is computed at the
cell vertices, it is averaged at the face centers before
computing the viscous flux balance. This discretiza-
tion is very efficient because it does not require the
evaluation of the gradients separately for each cell
face. However, as a consequence of the averaging
process, the discretization may admit odd/even de-
coupling modes. These modes should be damped by
the third-order artificial dissipation already added to
damp the odd/even modes arising from the central
difference approximation of the convective terms.
Alternatively, it is possible to add a correction sten-
cil to the velocity gradients calculated at the ver-
tices to approximately convert it to a more compact
stencil characteristic of a face-centered approach [31]

without increasing the computational cost. The first -

approached described is used here.

The implementation of this discretization procedure
for the viscous terms in the multiblock method re-
quires only a single halo for the both the flow values
and the grid locations.

MULTIBLOCK DESIGN STRATEGY

With the discussion of the multiblock flow solver

"completed, we will now describe the adjoint based

design methodology. The development and imple-
mentation of adjoint approaches for aerodynamic
shape optimization has reached a stage of maturity
in which problems of practical interest are starting
to be considered. In one of our recent publications,
both transonic and supersonic shape optimizations
were performed for complex aircraft configurations
subject to a variety of geometric constraints [49]. Al-
though the inviscid Euler equations were used as the
core CFD algorithm for these design calculations,
an accompanying paper at the same conference pre-
sented the derivation of a viscous adjoint algorithm
and demonstrated a preliminary wing-body design
capability using a viscous flow solver coupled with
an inviscid adjoint solver [32]. The methodology pre-
sented here will follow this latter approach to allow
for the capability of complete aircraft shape design
in the presence of viscous effects.

The course of action can be described as follows:
first, the structured multiblock Navier-Stokes flow
solver described in the previous section replaces the
inviscid multiblock method used in reference [49].
Therefore, although the expression for the cost func-
tion does not include viscosity related items, it re-
flects the effects of the presence of the boundary
layer. The ability to perform inviscid design cal-
culations is retained with a simple input flag. The
gradient of the cost function with respect to geomet-
ric design variables is then calculated via the solution
of the inviscid adjoint system of [49].

The lack of a viscous adjoint solver corresponding
to the viscous flow solver has various important im-
plications. First and foremost is the fact that the
use of an Euler adjoint is mathematically inconsis-
tent ‘with a cost function evaluated via a set of vis-
cous governing equations. Therefore, it is impossible
to obtain gradients from this approach that match
those obtained using finite differencing. However,
for problems of engineering interest, the objective is
not necessarily to find the true optimum at all cost,
but to get within a reasonable vicinity of the mini-
mum for a cost that is acceptable.

It is interesting to note that other design approaches
also suffer from a similar inconsistency for reasons
of engineering interest. Quasi-inverse design meth-
ods such as those used by Campbell [10, 11} as-
sume a relationship between the pressure distribu-
tion and the local surface curvature. This relation-
ship effectively provides an inconsistent gradient in
order to obtain improved designs. In reference [11]
the idea has been pursued in applications using the
Navier-Stokes equations. These approaches, which
may be applicable for a small sub-class of problems,



are likely to fail in situations where the heuristic as-
sumptions used to obtain gradient information cease
to be valid.

With these ideas in mind, it is important to con-
sider both the advantages and the limitations of the
present design technique. If the aerodynamic figure
of merit to be minimized has a direct dependence on
viscosity such as through the friction drag, the ap-
proach is rendered invalid since the inviscid adjoint
system lacks direct sensitivity to viscosity. However,
for problems in which viscosity plays an indirect role
the proposed design technique is bound to produce
useful results. Some important aerodynamic shape
optimization problems fall into this latter category.
Take for example the problem of pressure drag min-
imization for commercial transport aircraft. With-
out breakthroughs in either laminar flow control or
turbulent skin friction reduction technologies, most
of the aerodynamic performance improvements at-
tainable for a given configuration can be achieved
through pressure drag minimization (both induced
drag and wave drag). In addition, since the pressure
gradient normal to a viscous boundary layer for air-
craft at cruise conditions is negligible, the pursuit of
inviscid methods for aerodynamic shape optimiza-
tion has yielded moderate success [15, 50, 49].

However, inviscid design methods must be used cau-
tiously even for inverse pressure distribution or pres-
sure drag minimization problems, since the viscous
effects will indirectly alter these quantities. The
most noticeable effect is due to the boundary layer
displacement thickness. The magnitude and impor-
tance of the effective changes in wing shape caused
by the presence of the boundary layer depend on the
flow field in question, and generally become more
pronounced under transonic conditions. The po-
sition and strength of shock waves as well as the
level of pressure recovery at the trailing edge can be
strongly impacted by the existence of a boundary
layer. In transonic flow, it is thus highly desirable
to take viscous effects into account when designing
the aerodynamic shape of a wing to minimize pres-
sure drag.

When the effect of the boundary layer on the outer
flow couples very strongly, as is the case at transonic
buffet or at maximum lift coefficient conditions, the
ability to perform meaningful design without a vis-
cous adjoint can be questioned.

In summary, a design methodology has been devel-
oped that uses the Navier-Stokes equations for the
flow solution and an inviscid adjoint formulation to
obtain gradient information. This method is suitable
for a large class of problems of practical aerodynamic
interest. For problems in which the viscous effects
dominate the behavior of the flow, the viscous for-
mulation of the adjoint equations more than likely

will be necessary. It is our intention to pursue this
issue further in the coming months.

Adjoint Solver

The mathematical development of the inviscid ad-
joint equations used in this research has been exten-
sively discussed in our earlier work [23, 24, 25, 29, 45,
33, 46, 47, 48, 50]. An introductory treatment of the
derivation of a viscous adjoint has been given in ref-
erence [32]. In this section we present a short review
of the development of the inviscid adjoint equations
for the illustrative problem of pressure drag mini-
mization subject to a variety of constraints.

I= Cp

Cacosa+Cysina

1
= / Cp (S cosa + Sy sin o) d61 dés,
Sref Bs

where S; and S, define projected surface areas, S;.o¢
is the reference area, and df; and d¢, are the two
coordinate indices that are in the plane of the face
in question. Note that the integral in the final ex-
pression above is carried out over all solid boundary
faces. The design problem is now treated as a control
problem where the control function is the geometry
shape, which is chosen to minimize I, subject to the
constraints defined by the flow equations. A vari-
ation in the shape will cause a variation dp in the
pressure and consequently a variation in the cost
function
6Cp

81 = 6Cp + =260
Oa

where 8Cp is the variation due to changes in the
design parameters with « fixed. To treat the prob-
lem of practical design, drag must be minimized at
a fixed lift coefficient. Thus an additional constraint
is given by

6CL =0,

which yields

~ oC
6CL + =Lsa = 0.
da
Combining these two expressions to eliminate da

gives

—~~

M)
da
(%=)

6l =6Cp — 6CL. (15)

Since p depends on w through the equation of state,
the variation dp can be determined from the vari-
ation dw. If a fixed computational domain is used,
the variations in the shape result in variations in the
mapping derivatives. Define the Jacobian matrices
P

T dw’

C; = QijA;. (16)



Then the equation for dw in the steady state be-
comes

3]
ryYs i) = ] 17
5 (6F) =0 an)
where in the domain
0F; = Cidw + 6 (Qy5) fi»

and on the solid surface,

( ) ( 3

0 0
indp 5(Qn1)
0F, = < Qudép p+pS 6(Qn2) ¢ onany Bs.
Qn3dp 0 (@n3)
\ 0 J \ 0 /

(18)

Now, multiplying equation (17) by a vector co-state
variable 9, assuming the result is differentiable, and
integrating by parts over the entire domain,

/D ( 2, JFz) d¢; /B (Rsp76F;) dé; = 0, (19)

where 7i; are components of a unit vector normal to
the boundary. Equation (19) can now be subtracted
from equation (15) without changing the value of
d6I. Then 9 may be chosen to cancel the explicit
terms in dw and dp. For this purpose ¢ is set to the
steady-state solution of the adjoint equation

2% o.TQf

Y i 35, =0 in D, (20)

with the surface boundary condition

(¥2Qn1 + ¥3Qn2 + ¥4Qp3) = @ on all Bs, (21)

where

N S

%’YM %Sref
+Q(Sycosa — S sina)}.

Q = {(Sz cosa + Sysina)

At internal block boundaries, the face integrals can-
cel from the contributions of the adjacent blocks. At
the far field the choice of the adjoint boundary con-
ditions depends on whether the flow is subsonic or
supersonic. For subsonic flow, so long as the outer
domain is very far from the configuration of interest,
we may set

’lp1_5=0 on all BF.

It is noted that the waves in the adjoint problem
propagate in the opposite direction to those in the
flow problem because of the transpose in equation
(20).

Finally we obtain the expression

ol = 1 // Cp {(6Sz cos o + 85y sina)
Sref Bg
+Q(6Sy cosa — § Sz sin @) } d€1dEs
i}
+ [ 0 60u 1) dev 22)
b %

In order to evaluate the changes in the cost from
the above expression, the function ¥ must be de-
fined through the solution of (20). A major dif-
ference between the development of adjoint solvers
presented by our group and those cited in refer-
ences [4, 5, 6, 8, 7, 13, 14, 9, 38, 36, 20, 41, 37, 35] is
that we have relied on a continuous formulation. In
this formulation the adjoint system of equations is
derived starting from the continuous governing equa-

- tions to produce a set of continuous co-state equa-

tions including boundary conditions. This set of co-
state equations is then discretized for computational
analysis as a final step. A discrete formulation in-
terchanges the order of these operations by starting -
from the discrete governing equations and employing
linear algebra to obtain a discrete adjoint system. It
is useful to note that the final results from these two
approaches can be explained as alternate discretiza-
tions of the continuous adjoint formulation.

This subtle difference in the order of the adjoint and
discretization operations has several important im-
plications. Some of these differences have been ex-
plored in detail in the first author’s Ph.D. disser-
tation-[52] as well as in the recent work by Ander-
son and Venkatakrishnan [3]. For purposes of the
present work, it is important to focus on one partic-
ular difference between the continuous and discrete
adjoints. If a discrete approach is followed, gradi-
ents obtained via either the resulting adjoint or di-
rectly through finite differences should converge to
the same result. Hence, the very idea of using an
inviscid adjoint for a viscous state equation would
not exist. The combination of methods used in this
paper is derived from the natural flexibility of em-
ploying a continuous adjoint formulation.

Details of the particular discretization used here are
covered in reference [52]. The discrete adjoint sys-
tem is solved in precisely the same manner as the
flow equations. More details of the approach as well
as the development for other cost functions have
been presented in references [25, 29, 33, 46, 47, 50,
43, 49].

Design Variables and Underlying
Geometry Database

Even with the rapid developments of the last few
years regarding the derivation and implementation



of adjoint solvers, many unresolved issues require
further research efforts. Not the least of these re-
maining difficulties is the precise description of the
machinery used to modify the shape of interest. This
choice directly affects other aspects of the design al-
gorithm. Observing that equation (22) requires not
only the flow and the adjoint solutions, but also vari-
ations in the mesh metrics, we see the importance of
choosing the design variable formulation. In order
to obtain all the discrete gradient components from
equation (22) it will be necessary either to develop
an analytic expression for the variation in mesh met-
rics or to calculate them directly. The availability of
this choice will be determined by the choice of the
design variable formulation.

Available choices for the design variables span a wide
spectrum ranging from employing the locations of
the actual mesh points, to relying on the analytic
control points used in a CAD definition of the ge-
ometry.

In the case of using the actual mesh points, no un-
derlying geometry database exists. Constraints, if
present, must be imposed directly on the locations of
these mesh points. This approach will surely prove
problematic in general. Consider, for example the
difficulties involved in the imposition of a wing fuel
volume constraint. In addition, the treatment of
surface intersections (such as the wing-body) raises
difficulties for this approach since the path for the
motion of the mesh points lying directly on these
intersections is ill-defined.

However, an advantage of using the mesh points as
design variables is that, when combined with an an-
alytic mesh mapping transformation, the calculation
of the gradient can be performed without explicitly
computing the variations in the mesh metrics. Un-
fortunately, obtaining such a general mapping trans-
formation increases in difficulty with added geomet-
ric complexity.

The alternative of using an underlying geometry
database, which may be modified either by the di-
rect application of design variables or by changes
in the coefficients of its possibly analytic defini-
tion, also has its advantages. First, since the raw
unintersected geometries are available, constraints
and design changes affecting intersections are eas-
ily treated. This can be done without regard to the
actual mesh that is used for the flow and adjoint
calculations. However, these strengths are counter-
balanced by the fact that additional computational
work is required to calculate the mesh metric varia-
tions.

In the current research, we have used an underlying
geometry database where a set of simple geometric
entities, such as wings and bodies, are input to the

design algorithm in addition to the multiblock mesh
used for the calculations. Design variables which are
defined as a set of analytic shape functions are ap-
plied directly to these geometric entities. Linear and
nonlinear geometric constraints are then evaluated
on these primary entities. At any particular point
in the design process, changes to the mesh surfaces
are obtained by first intersecting all of the geomet-
ric entities to construct a set of parametric surfaces
representing the complete configuration. The loca-
tion of each surface mesh point on this parametric
representation of the geometry is determined for the
initial configuration in a pre-processing step. Thus,
the results of this pre-processed mapping from para-
metric geometry to the computational surface mesh
points is also a part of the necessary input. The
perturbed surface mesh point locations are deter-
mined by evaluating the parametric geometry sur-
faces at these predetermined locations. Once the
surface mesh points have been updated, the volume
mesh may be perturbed (see following section on
mesh motion) and either the gradient or the solution
can be calculated. The important feature of this ap-
proach is that a set of simple geometric entities lies

"at the core of the entire design process. This tech-

nique retains the typical way in which aerodynamic
vehicles are defined, and provides strict control over
how surface intersections are treated. Furthermore,
since the chosen design variables act directly on the
geometric entities, at the end of the design process
these entities may be output for future analysis.

In the current implementation, input geometric en-
tities are restricted to those defined by sets of
points. However, in the future, CAD entities such
as NURBS surfaces will also serve this role, thereby
allowing both the input and the output from the
aerodynamic surface optimization method to inter-
face directly with a CAD database.

Mesh Perturbation Algorithm

After we have applied a set of design variables to the
underlying geometry and mapped these changes to
changes in the computational surface mesh points,
two related tasks remain. For gradient calculations,
variations in the mesh metrics must be calculated.
In addition, when a design step is to be taken it must
be possible to deform the entire mesh to accommo-
date design changes. Both tasks are accomplished
in this work by the approach presented in references
[49] and are only outlined here.

Since it would be difficult in the current applica-
tion to obtain an explicit relationship between ar-
bitrary surface changes and variations in the multi-
block mesh metrics, these latter quantities are cal-
culated by finite differences. This approach avoids



the use of multiple flow solutions to determine the
gradient, but it unfortunately still requires the mesh
to be regenerated repeatedly. The number of mesh
generations required is proportional to the num-
ber of design variables. The inherent difficulty in
the approach is two-fold. First, for complicated
three-dimensional configurations, elliptic or hyper-
bolic partial differential equations must normally
be solved iteratively in order to obtain acceptably
smooth meshes. These iterative mesh generation
procedures are usually computationally expensive.
In the worst case they approach the cost of the flow
solution process. Thus the use of finite difference
methods for obtaining metric variations in combina-
tion with an iterative mesh generator leads to com-
putational costs which strongly hinge on the num-
ber of design variables, despite the use of an adjoint
solver to eliminate the flow variable variations. Sec-
ond, multiblock mesh generation is by no means a
trivial task. In fact no method currently exists that
allows this to be accomplished as a completely au-
tomatic process for complex three-dimensional con-
figurations.

Here, these difficulties are overcome through the
use of a mesh perturbation technique. In this ap-
proach, a high quality mesh appropriate for the flow
solver is first generated by any available procedure
prior to the start of the design. In examples to be
shown later, these meshes were created using the
Gridgen software developed by Pointwise, Inc.[53].
This initial mesh becomes the basis for all subse-
quent meshes which are obtained by analytic per-
turbations.

In order to perturb the multiblock mesh, two ca-
pabilities are required. First, the block corners,
edges and faces must be moved in a manner that
follows the desired geometric changes and simulta-
neously retains mesh continuity throughout the do-
main. The second requirement is to move all the
points interior to each block such that the spac-
ing distributions and smoothness of the original
mesh are retained. This latter requirement is ac-
complished by the WARP3D algorithm [43]. Since
our current flow solver and design algorithm assume
a point-to-point match between blocks, each block
may be independently perturbed by WARP3D, pro-
vided that perturbed surfaces are treated continu-
ously across block boundaries. The methodology
used to achieve the first requirement of maintain-
ing continuity in the blocking structure is given as
follows:

1. All faces that are directly affected by the design
variables (active faces) are explicitly perturbed.

2. All edges that touch an active face, either in
the same block or in an adjacent block, are im-

plicitly perturbed by a simple arc-length-based
algorithm.

3. All inactive faces that either include an implic-
itly perturbed edge or abut to an active face
are implicitly perturbed by a quasi-3D form of
WARP3D.

4. WARP3D is used on each block that has one or
more explicitly or implicitly perturbed faces to
determine the adjusted interior points.

Note that much of the mesh, especially away from
the surfaces, will not require mesh perturbations and
thus may remain fixed through the entire design pro-
cess. Close to the surfaces, many blocks will either
contain an active face or touch a block which con-
tains an active face, either by an edge or by a corner.
As the design variations affect the active faces, the
above scheme ensures that the entire mesh will re-
main attached along block boundaries. Added com-
plexity is needed to accomplish step (2) since the
connectivity of the various edges and corners must
be indicated somehow. Currently, pointers to and
from a set of master edges and master corners are
determined as a pre-processing step. During the de-
sign calculation, perturbations to any edges or cor-
ners are fed to these master edges and master cor-
ners which in turn communicate these changes to all
connected edges and corners.

Since this mesh perturbation algorithm is explicit
it is possible to work out the analytic variations in
the metric terms required for equation (22). This
approach was followed in [46]. However since the
mesh perturbation algorithm that is used in the cur-
rent paper was significantly more complex, and it
was discovered that the computational cost of re-
peatedly using the block perturbation algorithm was
within reason, finite differences were used to calcu-
late 0Q);; instead of deriving the exact analytical re-
lationships.

Optimization Algorithm and
Problem Constraints

With all of the machinery to obtain gradients for an
arbitrary set of design variables in place, it remains
as a final detail to outline the numerical optimization
algorithm and the imposition of constraints. The
NPSOL optimization algorithm employed here was
chosen because of its extensive past use on aero-
dynamic optimization problems, and its treatment
of both linear and nonlinear inequality constraints.
NPSOL [16] is a sequential quadratic programming
(SQP) method in which the search direction is calcu-
lated by solving the quadratic subproblem where the
Hessian is defined by a quasi-Newton approximation
of an augmented Lagrangian merit function. The



Lagrange multipliers in this merit function serve to
scale the effect of any nonlinear constraints that the
design may contain. Linear constraints are treated
by solving the quadratic subproblem such that the
search direction remains in feasible space. A com-
plete treatment of the method and other optimiza-
tion strategies is given in [17].

The entire design procedure is outlined below:

1. Decompose the multiblock mesh into an appro-
priate number of processors, and create lists of
pointers for the communication of the processor
halo cells.

. Solve the flow field governing equations (6-11)
for each design point.

Solve the adjoint equations (20) subject to the
boundary condition (21) for each design point.

For each of the n design variables repeat the
following:

Perturb the design variable by a finite step
to modify the geometric entities.

Reintersect the geometric entities and
form parametric geometry surfaces.

Explicitly perturb all face mesh points af-
fected by the geometry changes by evalu-
ating their locations on the parametric ge-
ometries.

Implicitly perturb all faces that share an
edge with an explicitly perturbed face.

e Obtain the perturbed internal mesh point
locations via WARP3D for those blocks
with perturbed faces.

Calculate all the delta metric terms, §Q); ;,
within those blocks that were perturbed
using finite differencing.

Integrate equation (22) to obtain &I for
those blocks that contain nonzero 4Q); ;,
and for each design variable, to determine
the gradient component.

5. Calculate the search direction and perform a
line search via NPSOL.

6. Return to (2) if a minimum has not been
reached.

PARALLELIZATION STRATEGY

Communication Management

Efficient parallel computation on a set of distributed
processors is achieved by a combination of minimiz-
ing the overhead of communication between these
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processors and balancing the partitioned workload
among them. The first obvious choice in order to im-
prove parallel performance is then to minimize the
amount of communication required between proces-
sors. This includes minimizing the number of mes-
sages sent and received (latency) as well as the total
amount of data to be transferred (bandwidth). Fur-
ther improvement may be achieved by using other
techniques such as latency hiding and scheduled
communication, if either the problem or the specific
architecture of the distributed platform allow it.

Latency hiding is in itself a form of local paral-
lelism, where the communication and computations
of an individual node proceed concurrently with each
other. This benefit is accomplished by initiating the
bi-directional asynchronous communication as soon
as the data to be passed has been updated and in
such a manner that calculations that can be done
(without updated data from remote nodes) are per-
formed while the communication continues in the
background.

In the case of networks which utilize a collision-
detection based protocol (e.g., ethernet), scheduled
information transfer may help reduce the commu-
nication overhead. A consequence of the collision-
detection mechanism is that the effective bandwidth
of a saturated network is degraded since a portion of
it is wasted when two or more processors are trying
to initiate communication simultaneously. Hence, by
scheduling or synchronizing the messages between
processors, one can minimize this deterioration in
performance. On the other hand, the current gener-
ation of parallel computers typically include a net-
working environment which is capable of sustaining
simultaneous communication among all the proces-
sors in the machine. This enhanced communication
ability comes with a high price tag. An intermedi-
ate solution where hardware switching is embedded
in a workstation distributed computing environment
will be shown to be a compromise between these two
options.

In this paper, we revisit the task of minimizing the
amount of total communication required between
processors. However, we avoid the temptation to
communicate less often than is consistent with the
baseline serial calculation so that the convergence of
the original scheme is exactly maintained. The pos-
sibility of improving the parallel performance of the
method by further restricting the amount of commu-
nication at different points in the multigrid sequence
will be investigated at a later time.

The following subsections describe the baseline
method against which all improvements are mea-
sured, and the modifications (associated with com-
munication overheads) developed under the present
work.



Baseline Communication

The multiblock solver is parallelized by using a do-
main decomposition model, a SPMD (Single Pro-
gram Multiple Data) strategy, and the MPI Library
for message passing.

The baseline parallel scheme is exactly consistent
with the serial multiblock solution: the results pro-
duced by both programs are identical, including the
convergence history of the method. Updates to the
solution vector in all processors occur at every stage
of the Runge-Kutta time-stepping scheme and in
every level of a multigrid W-cycle. In addition,
the baseline computations are performed with 64-bit
arithmetic. Therefore, flow residuals in the calcula-
tion can be converged approximately 13 orders-of-
magnitude before roundoff effects stall the conver-
gence process.

The multiblock strategy adopted in this work allows
the independent update of the internal cells of ev-
ery block in the mesh by using a halo or ghost cell
approach. The information in this halo of cells sur-
rounding each block is transferred from the corre-
- sponding physical cells in the interior of the neigh-
boring blocks. The baseline scheme utilizes a three-
pass communication model which allows for the com-
putation of solutions on arbitrarily oriented multi-
block meshes.

Under this model, updated halo information is trans-
ferred across the six faces of each block during each
phase of the three-pass communication. The first
pass transfers face information, the second pass pro-
vides edge data, and the final pass is required to
update the solution across the block corners. With
this three-pass approach, each block is guaranteed to
have the proper information in its complete halo (in-
cluding edges and corners) regardless of the topology
of the mesh. This is a particularly challenging sit-
uation when more than four blocks meet at a given
edge. The double halo is used to compute the third-
order artificial dissipation terms while preserving a
fully conservative scheme. Although the current dis-
cretization of the viscous fluxes requires only a single
level halo, future variations which require the pres-
ence of a double halo can be accommodated with
this procedure.

In addition to the above, the blocks of the baseline
solution are distributed to the individual processors
in such a manner that the total number of unknowns
per processor is as evenly loaded as possible. While
finding the optimum distribution is recognized to be
an NP-Complete problem, a simple algorithm is em-
ployed which routinely yields a load balancing in
the neighborhood of the optimum. The essence of
this algorithm is to take the largest of the remaining
blocks (yet to be distributed) and assign it to the
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| Processor | Ncells [ Cell-Ratio ]

1 185,088 1.007
2 185,088 1.007
3 182, 400 0.993
4 182, 400 0.993

Table 1: Baseline Load-Balance for the Benchmark
Test Case on 4-Processors.

processor with the smallest current load. Repeating
this procedure until all blocks have been distributed,
an effective load balance algorithm is obtained. Ta-
ble 1 illustrates the effectiveness of this algorithm
for our benchmarking test case.

The test case of Table 1 is used to benchmark the
effectiveness of the enhancements described below.
It is a 72-block grid about a wing-fuselage-nacelle
geometry. The total number of cells in the system
is 734, 976. Of these, roughly 300,000 are halo cells.
This case was chosen specifically because it accentu-
ates the penalty of communication. Yet, on a high-
speed, low-latency network such as those on the IBM
SP2 or the SGI Origin2000, the corresponding flow
solutions scale reasonably with the number of pro-
CessOors.

One-Pass Communication Model

The use of the original three-pass communication
model was necessary for handling a completely gen-
eral block structure. Drawbacks of this approach
are that redundant communications are performed
and that the second and third passes must wait un-
til the previous passes have completed before they
are started.

The source of redundant data passing can be seen
by following the flow of information from one block
to a neighboring block coincident with an edge or a
corner of the originating block. For example, across
an edge, information from one block to another (lo-
cated above and to the right) can flow in one of two
ways. Firstly, the data could flow from the origi-
nating block to its right-hand neighbor, then this
information could be transferred from this neigh-
bor to the block directly above it. Alternatively,
the data could first move upward, then to the right.
Because of the complexity involved in determining
which path the data should flow along and which
it should not, the baseline three-pass model trans-
fers the information in both directions. Similarly,
for communications across corners, this redundancy
is three-fold.

Hence, an obvious source of improvement is to re-
move redundant data transfers from the communi-
cations model. This is accomplished by adopting



[Processor [ 1 [ 2 [ 3 [ 4 | _MPI |[Processor [ 1 | 2 [ 3 | 4 [ MPI
1 22,848 | 30,080 | 27,040 | 12,960 70,080 1 17,504 | 26,480 | 21,128 | 13,744 61,352 |

2 30,080 | 23,296 | 5,376 | 20,224 55,680 2 26,496 | 17,696 | 8,264 16,264 51,024

3 27,040 | 5,376 | 21,248 | 31,648 64,064 3 21,232 | 8,256 16,792 | 27,864 57,352

4 i 12,960 | 20,224 | 31,648 | 12,992 64,832 4 13,776 | 16,232 | 27,768 | 10,136 57,776
MPI ]| 70,080 | 55,680 | 64,064 | 64,832 ]| 254,656 || MPI || 61,504 | 50,968 | 57,160 | 57,872 || 227,504 |

Table 2: Three-Pass Communication Matrix using
the Baseline Load-Balance.

a single-pass scheme which reproduces exactly the
end state of the original three-pass model. In or-
der to ensure that the the one-pass communication
model produces results identical to the three-pass
approach, the original three-pass model is used to
initialize the communication lists of the one-pass
method. This is accomplished in the following man-
ner: after the blocks of the grid system have been as-
signed to an appropriate processor through the load
balancing procedure, the solution vector is colored
with information that describes its starting location
prior to any communication. This encoding includes
information such as block and processor numbers
and local cell indices. With this state set, the so-
lution vector is processed with the original three-
pass communication model. Upon completion of this
data transfer, every halo cell in the distributed sys-
tem has been reset with information which points
back to its origin, i.e. block number, processor num-
ber and “distant” cell index. At this stage, new com-
munication lists are constructed and returned to the
source processor which stores them for future use by
the one-pass model.

Tables 2 and 3 illustrate the reduction in commu-
nication achieved for the one-pass model. These
tables provide the communication matrix (for the
finest mesh in the multigrid sequence) of message
sizes for each communication approach. The diago-
nal terms of these matrices correspond to messages
that a processor needs to send to itself. For this
kind of message, the present method uses a local
memory copy instead of an actual MPI (Message-
Passing Interface) message, which is used for inter-
processor communication. For the benchmark test
case, the one-pass model reduces the total message
length by about 11% on the fine mesh. However,
because there is no forced synchronization between
passes as in the three-pass model, the overhead re-
duction approaches 25%.

Delta Updates

In the baseline code, communication always trans-
ferred the actual values of the solution vector. In
order to preserve 64-bit accuracy, all of these values
were transferred as 64-bit floating-point numbers. In
the present one-pass model, an additional choice of
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Table 3: One-Pass Communication Matrix using the
Baseline Load-Balance.

communication model has been implemented. We
refer to this communication model as the delte up-
date procedure.

The purpose of including a delta form in the present
work is motivated by the fact that these delta in-
crements can be transferred as 32-bit numbers while
maintaining 64-bit accuracy in the converged solu-
tion. Naturally, maintaining this level of precision
during the course of convergence requires an occa-
sional reset of the halo values with a 64-bit commu-
nication, although the large majority of the commu-
nication is now performed using only single precision
32-bit numbers. For this occasional reset, we have
maintained the capability to transfer actual full pre-
cision values of the solution vector.

For all practical purposes, the communication over-
head of the new delta form is half that of the baseline
(full precision) transfers.

Communication-Weighted Load Balancing

As mentioned above, the original load-balancing al-
gorithm was guided solely by the number of cells
being distributed to the complete set of processors.
This form of load balancing has proved to be quite
acceptable for platforms with state-of-the-art com-
munication capabilities such as the IBM SP2. How-
ever, for a cluster of workstations linked together
with a lower performance network, this technique
can be further refined.

A new load-balancing algorithm has been developed
which includes the penalties associated with out-of-
processor communication. In this setting, the load
is defined as the time it takes each processor to com-
plete all of its tasks-numerical processing as well as
sending and receiving the necessary messages. The
predicted times of each of these tasks are derived us-
ing experimentally obtained MFLOPS (Millions of

Floating Point Operations per Second) ratings, and

the MPI latency and bandwidth values associated
with the particular distributed platform.

The new load-balancing algorithm is very similar to
that of the original method, but the “size” of each
block is now initialized assuming that the informa-
tion of all halo cells will be transferred to another



LATENCY | BANDWIDTH
PLATFORM MFLOPS (p-sec) (MBytes/s)
SP2 Switch US 50 43 35.0
" SP2 Switch IP 50 285 13.0
HP/3280-100BaseT 30 290 7.0
HP/J280-ethernet 30 600 0.8

Table 4: Observed Capacities of Various Platforms.

processor. The algorithm then proceeds by taking
the largest of the remaining blocks (yet to be dis-
tributed) and temporarily assigning it to every pro-
cessor. When assigned to each processor, a tempo-
rary update of the load of that processor is made by
adding the size of the current block to that proces-
sor’s previous load. This assignment is rewarded by
a decrease in the equivalent size if neighboring blocks
are already assigned to that processor and thus no
communication is necessary. After all temporary as-
signments have been done, the processor whose load
is the smallest after the assignment is selected and
the block is permanently assigned to that processor.
The previous steps are repeated until all blocks have
been distributed.

Table 4 provides representative values for the IBM
SP2 using the switch in User Space mode (high
performance communication mode), for the switch
and IP (Internet Protocol), and for an HP worksta-
tion cluster of J280s using switched-100BaseT and
standard ethernet. These values have been exper-
imentally observed and may vary from site to site.
They correspond to the measured values of latency
and bandwidth using various implementations of the
MPI standard on the different platforms mentioned
above. They are not the manufacturer’s published
data for the communication hardware. It is inter-
esting to note that the values of latency and band-
width obtained for the switched-100BaseT network
are quite close to those for the IBM SP2 system
communicating in IP mode. Therefore, the SP2 can
be used to simulate large networks of workstations
linked together by a switched-100BaseT network.

Using the network characteristics for the HP cluster
on standard ethernet, a new distribution of blocks is
obtained. This distribution is provided in Table 5.
Comparing it with Table 1, it is noticed that the
number of cells per processor is not nearly as well
"balanced” as before. Yet, the solution’s cycle time
of the new distribution on the HP cluster using an
ethernet network is only 57.46 seconds as compared
with the original cycle time of 108.38 seconds.

The secret of this performance improvement can be
seen by comparing the communication matrices of
the original load-balanced distribution with that of
the improved one. This information is provided by
Tables 3 and 6, respectively. Notice that the new

| Processor | Ncells [ Cell-Ratio |

1 169, 536 0.923
2 203,136 1.106
3 188, 544 1.026
4 173,760 0.946

Table 5: New Load-Balance for the Benchmark Test
Case on 4-Processors.

[Processor [ 1 T 2 [ 3 [ 4 [ MPI

1 28,848 | 11,888 | 16,736 | 4,304 32,928

2 11,968 | 42,168 | 2,368 | 16,328 30, 664

3 16,744 | 2,552 | 43,840 | 11,696 30,992

4 4,456 | 16,576 | 11,648 | 35,384 32,680
(C_MPT__ 33,168 | 31,016 | 30,752 | 32,328 ]| 127,264 |
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Table 6: One-Pass Communication Matrix using the
New Load-Balance.

load-balancing algorithm has done an effective job
of reducing the amount of data to be transferred via
MPI. Under the baseline distribution, MPI messages
are used to set a total of 227,504 halo cells in the fine
mesh. Using the new load-balancing algorithm, MPI
calls are only responsible for resetting now 127,264
halo cells. This is accomplished by increasing the
amount of data transfer each processor does with
itself (i.e., in a global sense, communication is drawn
toward the diagonal of these matrices).

Single-Layer Halo Communication

In the baseline method, we stated that a double-
layer halo surrounds each block and it is utilized
to facilitate calculation of the third-order artificial
dissipation fluxes. However, upon close inspection
of the 5-stage Runge-Kutta scheme and multigrid
processes, we note that the dissipative fluxes are not
recomputed as often as the solution updates occur.
In particular, these dissipative terms are typically
reset only during the odd stages of Runge-Kutta on
the finest mesh and never computed in any of the
coarser levels of the multigrid scheme.

Immediately, we can omit transferring the outer-
layer halo data during the even (of five) stages of
Runge-Kutta in the fine mesh. This reduces the fine-
mesh communication by 20%.

For a 4-level multigrid W-cycle in the baseline code,
more than 45% of the total data transferred during
the cycle resides in the coarser-level meshes. T By
updating only the data of the inner halo during the
coarse-level communication, an additional improve-
ment is realized.

tA W-cycle with four levels of multigrid traverses the
second-level grid exactly twice when communication is in-
volved; four times in the third and fourth levels. The number
of halo cells of a coarse-mesh is at least one-fourth that of




The above two improvements combine to reduce the
total amount of data transferred per multigrid cy-
cle. Relative to the baseline communication, this
reduction in overhead is between 33.3% and 54.7%,
depending on the granularity of the mesh involved.

Communication Improvement Summary

For the 72-block mesh in question, the relative im-
provements in communication overhead with respect
to the original scheme can be summarized as follows:

20% reduction in overhead with one-pass
(benchmark).

50% reduction in overhead with delta form (in
general).

50% reduction in overhead with new load bal-
ancer (benchmark, ethernet).

33%-55% reduction in overhead with single-halo
transfers (in general).

Communication reduced by a minimum of 75%
when combined.

RESULTS
Design Results

The design test cases to be presented here will focus
on the wing redesign of a typical transonic business
jet. The designs will be carried out independently
using the Euler and Navier-Stokes equations. The
discussion will conclude with comparisons between
the final Euler and Navier-Stokes designs. For the
Euler design case, reference [50] gives a treatment of
the reliability of the flow solver as well as ‘the abil-
ity of the adjoint method to provide accurate gradi-
ents very efficiently. With regard to the validity of
the Navier-Stokes case, a comparison will be made
for the initial configuration using both the inviscid
and the viscous equations. The adjoint gradients
for the Navier-Stokes test case will not be compared
with finite difference calculations for two reasons.
First, since the adjoint used to obtain the gradients
is not of the viscous type, it is understood and ac-
cepted that it will not produce gradients that are
consistent with the finite difference approach. Sec-
ondly, the computational cost of obtaining finite dif-
ference gradients for the Navier-Stokes design on a
large three-dimensional test case is prohibitive. In
order to obtain accurate finite difference gradients,

the next finer mesh. Hence, the baseline communication in
the coarse grids is at least 81% as intense as it is in the finest
mesh. Further study of a grid with only one interior cell in the
fourth-level mesh shows that the baseline communication in
the coarser grids can approach 183% that of the finest mesh.
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the flow solution must be converged at least two or
three orders more than is necessary for adjoint gra-
dients [52, 39]. Navier-Stokes solvers with their no-
toriously slow convergence would take an unaccept-
able number of iterations to achieve such a level of
convergence.

Flow Solver Comparison

In the design demonstration of the multiblock op-
timization algorithm to follow, a typical transonic
business jet configuration is considered. The same
geometry was also studied in [50, 15, 49]. Here
the complete configuration including wing, body, na- -
celle, pylon, vertical tail, and horizontal tail will be
used. Prior to the start of the designs, flow analyses
were completed using the Euler and Navier-Stokes
equations. ‘

Two alternative meshes were constructed that
shared the same block topologies and differed only
in the normal wall spacings and cell counts. The
meshes were both created with a general C-O topol-
ogy and flow-through nacelles. Both meshes fea-
tured 240 blocks, with the Euler mesh having 4.1
million computational cells and the Navier-Stokes
mesh having 5.8 million computational cells. The
relative ratio between the two is smaller than ex-
pected since the Euler mesh was constructed from
the Navier-Stokes mesh simply by coarsening in
the viscous direction. Furthermore, while complete
configurations are being modeled, only the wing is
treated as a viscous solid surface. The other compo-
nents are handled with inviscid boundary conditions.
A single flow calculation for the Euler solution using
200 multigrid cycles converges 5 orders of magni-
tude in 0.8 hours of wall clock time on 32 processors
of an IBM SP2 machine. By comparison, a Navier-
Stokes analysis uses 300 multigrid cycles to converge
4.7 orders of magnitude and consumes 2.0 hours of
wall clock time on 32 processors of an IBM SP2 ma-
chine. An Euler and a Navier-Stokes solution are
compared for the baseline configuration at the same
over-design flight conditions and compared in Figure
(1). The C,, distributions depicted in the figure show
the usual trend of having the shock strength and
location being moved forward for the viscous anal-
ysis when compared to the inviscid analysis. The
Navier-Stokes calculation was carried out using an
all-turbulent boundary layer with a Baldwin-Lomax
turbulence model. The wall normal spacing of the
first cell was such that at the cruise condition a
yT = 1 would be attained at the half span trail-
ing edge assuming a flat plate turbulent boundary
layer. At the cruise condition (M = 0.80 and an
altitude of 40,000 ft) the Reynolds number is 1.45
million/ft.



The wing sweep for the design is a low 20 degrees.
Thus, with the thick airfoil sections featured in the
configuration, it represents a challenge to contain
wave drag at the moderate Mach numbers of its de-
sign point (M = 0.75 - 0.82). Although they are
not presented here, correlations of the wing pressure
distributions have been obtained with experimental
data. The comparisons with tunnel data are excel-
lent except for a 5% difference in the location of the
upper surface shock for the inviscid analysis. The
Navier-Stokes solutions virtually overlay the wind
tunnel data.

Inviscid Transonic Flow Constrained Aircraft Design:

The Euler mesh described above was used during
an inviscid redesign of the wing in the presence of
the complete configuration. The baseline configu-
ration was designed for flight at M = 0.80 with a
Cr, = 0.30. In this inviscid design case, a single point
constrained design is attempted in which the Mach
number and C7, are pushed to 0.82 and 0.35 respec-
tively. The objective is to minimize configuration
pressure drag at a fixed lift coefficient by modifying
the wing shape. Eighteen Hicks-Henne design vari-
ables were chosen for six wing defining sections for
a total of 108 design variables. Spar thickness con-
straints were also enforced at each defining station
at z/c = 0.2 and z/c = 0.8. Maximum thickness
was forced to be preserved at z/c = 0.4 for all six
defining sections. Each section was also constrained
to have the thickness preserved at z/c = 0.95 to en-
sure an adequate included angle at the trailing edge.
A total of 55 linear geometric constraints were im-
posed on the configuration. Figure (2) shows over-
lays of the C}, distributions for the initial and final
design after 6 NPSOL design iterations at four sta-
tions along the wing. It is seen that the final result
has reached a near-shock-free condition over much
of the outboard wing panel. The drop in complete
configuration pressure drag for this case was 24.6%.
Noting that most of this drag reduction came from a
decrease in wing wave drag implies that further im-
provements may be possible through the reshaping
of other components. The program took 13.5 hours
to complete 6 design cycles on 32 processors of an
IBM SP2.

Viscous Transonic Flow Constrained Aircraft Design

In a second design example for this complete busi-
ness jet configuration, a viscous redesign of the wing
is attempted. The design point is again chosen to
be Mach = 0.82 with a C, = 0.35. Again the design
algorithm, this time with a no-slip boundary condi-
tion on the wing and the viscous terms turned on,
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is run in drag minimization mode. Figure (3) shows
an iso-C), colored representation of the initial design
and the final design after 5 NPSOL design iterations.
It is clearly seen that the rather low C, region ter-
minated by a strong shock spanning the entire wing
upper surface has been largely eliminated in the fi-
nal design. Figure (4) shows the initial and final
C, distributions achieved using the same 108 design
variables and 55 geometric constraints employed for
the inviscid test case. Note that the strong shocks
present on both the upper and lower surfaces in the
initial configuration have been eliminated. Further-
more, it is apparent that the character of the changes
to the pressure distribution follow those that oc-
curred for the Euler based design to some extent.
The main difference is that the Navier-Stokes de-
sign tends to have a more benign behavior in the
pressure distributions. The overall pressure drag for
the complete configuration was reduced by 21.5%.
Before proceeding to the next section, it should be
noted that these business jet design examples are
only representative of the potential for automated
design, and are not intended to provide designs for
actual construction. First, in each case only 5 or 6
NPSOL steps were taken where considerably more
could have improved the designs slightly. More im-
portantly, since these are only single point designs,
either may suffer unacceptable off-design behavior.
In our most recent previous paper [49] we treated
the case of inviscid design at multiple design points
while here we address the case of viscous design at a
single design point. Eventually, both the multipoint
and viscous design capabilities must be treated con-
currently. The calculation took 28 hours to complete
5 design cycles on 32 processors of a IBM SP2.

Crosscheck

To see the difference between the two design cases
explored here the Euler based design was reanalyzed
using the Navier-Stokes equations. The mesh for
this cross check was created by entering the design
variable coefficients produced from the Euler design
process into a set of inputs for a Navier—Stokes anal-
ysis. The result of this reanalysis is shown in Figure
(5). It is seen that the wing designed using the new
Navier-Stokes approach employed here has slightly
weaker shocks than the one designed via the use of
the inviscid approach. This conclusion is also sup-
ported by the fact that the drag improvement for
the Euler design analyzed with the Navier-Stokes
equations has a 20.5% improvement as contrasted
with the 21.5% for the Navier-Stokes based design.
However, it is seen from these two designs that the
Euler strategy did not perform at all poorly and in-
deed was able to achieve much of the improvement
that was possible from a Navier-Stokes based design



method. This conclusion must be taken with caution
since the sensitivity of the pressure distributions to
the presence of the boundary layer can vary widely
depending on the configuration. Furthermore, had
we used a true viscous adjoint it may have been pos-
sible to lower the pressure drag for the configuration
even further. Clearly, much further testing of the
design approaches developed here is needed. These

calculations must be taken as the preliminary steps -

towards Navier-Stokes based aircraft design.

Parallel Performance of the Method

The following section presents a series of parallel
scalability curves for the baseline code with the var-
ious added improvements to reduce the communica-
tion overhead. The scalability study was conducted
for two different meshes whose ratio of computation
vs. communication was chosen to be at both ends of
the spectrum. The first mesh is the benchmark mesh
referred to above. This mesh consists of 72 blocks
of varying sizes and has a total of 734,976 cells of
which over 300,000 reside in the halos. As one can
see, the results on this mesh will provide an extreme
test of the scalability of the method since a large
part of the time will be spent in the communication
process. The second mesh is referred to as the fine
mesh and consists of 48 blocks of different sizes with
a total of 2.5 million cells, from which about 600, 000
reside in the halos. This mesh has a much higher
ratio of computation to communication, and there-
fore, the parallel scalability of the code is expected to
improve when compared with the benchmark mesh.
Nevertheless, the contrast provided between the re-
sults in the two meshes is intended to be illustrative
of the range of performance that can be expected for
meshes of varying sizes.

Scalability studies were conducted on a range of
platforms whose performance characteristics are pre-
sented in Table 4. These platforms include the
very high performance communication network of
the IBM SP2 (in User Space mode) and networks of
workstations connected via standard 10BaseT eth-
ernet as well as a higher performance (although still
low cost) switched-100BaseT fast ethernet network.
For the benchmark mesh, the range 1 — 16 was se-
lected for the number of processors, whereas for the
fine mesh, 4 — 32 was selected instead. This latter
choice results from the inability to fit this large size
calculation in a number of processors smaller than 4.
In order to present speedup data for this mesh, the
best achievable timing for a one processor calcula-
tion was derived from the measurements of compu-
tational time (not communication) observed for the
4 processor case. It will be seen from the data that
for this mesh the program must scale at worst lin-
early between 1 and 4 processors and therefore our
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timing assumption is conservative.

Figures 6-8 present the results obtained for the
benchmark mesh using the IBM SP2 in User Space
and Internet Protocol modes and the cluster of work-
stations using switched-100BaseT for both the base-
line and the improved load balancing algorithms.
Since the SP2 in User Space Mode has a very high
performance network, the impact of the use of dif-
ferent load balancing techniques is small. For ex-
ample, the parallel speedup for the l-pass, single
precision scheme using 16 processors remained vir-
tually unchanged from 11.88 to 11.89. When used
in IP mode (a lower performance network that very
well simulates the results on the network of work-
stations linked via switched-100BaseT) the results
of improved load balancing schemes start to show
up. For the same communication algorithm and the
same mesh, the parallel speedup improved from 8.46
to 8.70 using 16 processors. Using 8 processors on
the switched-100BaseT network for the same algo-
rithm, the parallel speedup improves from 3.212 to
3.645. These results are even more dramatic for the
case of the lowest performance network: unswitched
10BaseT (ethernet). In this case, the use of the im-
proved load balancing scheme decreased the time to
complete one multigrid iteration from 108.38 seconds
to 57.46 seconds using 4 processors in the network.

A more interesting point addressed by the results in
these scalability plots is the increase in performance
derived from successive improvements to the com-
munication algorithm. Figures 6a, 7a, and 8a show
the progression from the 3-pass and double precision
scheme to the 1-pass and double precision, 1-pass
and single precision, and 1-pass and single precision
with single level halo schemes using the IBM SP2 in
both US and IP modes and the network of switched-
100BaseT workstations. These results use the orig-
inal load balancing technique. Similar conclusions
can be obtained from Figures 6b, 7b, and 8b which
use the improved load balancing algorithm. For the
US results, the parallel speedup using 16 processors
improved from 10.41 to 13.00. For the IP results, the
improvement is larger (as expected from the use of
a lower performance communication network): par-
allel scalability for the same number of processors
improved from 7.11 to 10.69. It must be noted that
in both cases, there is an upper limit to the parallel
scalability achievable by the scheme derived from the
impossibility of evenly load balancing a calculation
in which the sizes of the different blocks in the mesh
vary. For this case, this upper limit on parallel scala-
bility using 16 processors is found to be 14.9, which is
very close to the actual achieved value using the IBM
SP2 in US mode, considering the highly communica-
tive nature of the benchmark mesh. At the same
time, the results for the switched-100BaseT network
of workstations using 8 processors show an improve-



ment in parallel scalability from 2.98 to 5.41, point-
ing out how much more important these successive
communication improvements are for networks with
lower performance. From these data, it is clearly
seen that a high performance message passing im-
plementation is essential to allow the effective use of
networks of workstations.

A more clear representation of the improvement
in communication performance can be seen in Fig-
ure 9a where the parallel scalability results using
the IBM SP2 US and IP modes for the benchmark
mesh have been overlaid. The lower curve shows the
speedup obtained using the original scheme (3-pass,
double precision) with the SP2 in US mode, whereas
the upper curve shows the speedup of the improved
scheme (1-pass, single precision, single level halo)
using the SP2 in the lower performance IP commu-
nication mode. Since the IP mode is representative
of a switched-fast ethernet network of workstations,
one can deduce from this graph that the improve-
ments in communication performance introduced in
this work make the use of networks of workstations
for the design process entirely feasible.

All these scalability studies were repeated for the
fine mesh with 48 blocks and 2.5 million cells. The
difficulties with parallel scalability exhibited by the
previous figures are substantially ameliorated. In
the interest of space, only a summary is presented in
Figure 9b where the results using up to 32 processors
are presented for the IBM SP2 in US mode and the
different variations in communication algorithms. It
can be seen that the communication improvements
shift the scalability curve slightly upwards. This
shift. is small since for numbers of processors up to
16 the ratio of communication time to processing
time is very small. Note that some of the calcula-
tions exhibit superlinear speedup for some numbers
of processors; this effect has been observed previ-
ously [12] and is attributed to a better utilization of
" the processor cache resulting from a decrease in size
of the datasets that the processor operates on. The
decrease in performance for the 32 processor results
is a consequence of the poor load balancing that can
be obtained with a mesh that only has 48 blocks.

Although not reported in any of the figures,
scalability studies were performed for the base-
line unswitched ethernet network of workstations
(10BaseT). This communication fabric has the lim-
itation that the total bandwidth of the system re-
mains constant, independent of the number of pro-
cessors in the calculation. This lack of bandwidth
scalability results from the very nature of ethernet
communication; the network can be used by only
one processor at a time. Table 7 shows the re-
sults for the parallel speedups obtained using the
baseline algorithm (original load balancing, 3-pass,
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[ No. Processors | Baseline | Optimize(i |

1 1.000 1.000
2 0.768 1.552
4 0.688 2.301
8 1.493

Table 7: Parallel Speedups for the Baseline and Op-
timized Communication Schemes Using unswitched
Ethernet (10BaseT)

double precision) and the improved communication
(new load balancing, 1-pass, single precision, sin-
gle level halo). The disappointing performance of
this network clearly points out that typical ethernet
networks are not suitable for parallel computations
such as these ones which place a high demand on
the communication layer. Despite this negative re-
sult, it is apparent that the new communication al-
gorithms dramatically improved the performance of
the method.

CONCLUSIONS

A general aerodynamic shape optimization method
has been developed and demonstrated for the case
of Euler and Navier-Stokes automatic redesign of
a complete aircraft configurations in transonic flow.
The design method is implemented on distributed
memory systems (including parallel computers and
distributed networks of workstations) using the MPI
Standard and it achieves excellent scalability in all
platforms except for the simple unswitched-Ethernet
case (10BaseT). For a full configuration viscous
mesh containing 5.8 million cells and 240 blocks, a
complete design including a total of 5 design itera-
tions can be completed in 28 hours using 32 proces-
sors of an IBM SP2 system. The present method
uses the Navier—Stokes equations for the solution of
the flow and an inviscid adjoint solver for the calcu-
lation of the gradient information. Further research
and development work is required to assess the ap-
plicability and usefulness of a viscous adjoint tech-
nique.

With the present method, the automatic aerody-
namic design of complex aircraft configurations us-
ing a high fidelity viscous flow model based on the
RANS equations becomes feasible on the current
generation of parallel computers. Moreover, the ap-
plicability of the method is demonstrated for use in
networks of workstations with a moderate invest-
ment in networking resources (switched-100BaseT).
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Figure 2: Business Jet Configuration. Euler Based Drag Minimization at Fixed Lift.
M =0.82,Cr =0.35

108 Hicks-Henne variables. Spar Constraints Active.

- - -, Initial Pressures

—, Pressutes After 6 Design Cycles.
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3a: Baseline Design

3b: Optimized Design

Figure 3: Transbnic Business Jet Configuration
Iso-Cp Contours, Navier-Stokes.
Baseline and Optimized Designs.

M = 0.82, CL= 0.35
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— - NSsolution — - NS solution
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Figure 4: Business Jet Configuration. Navier-Stokes Based Drag Minimization at Fixed Lift.
M =0.82,C =0.35

108 Hicks-Henne variables. Spar Constraints Active.

- - -, Initial Pressures

—, Pressures After 5 Design Cycles.
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— . NS solution Buler Design — - NSsolution Euler Design
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Figure 5: Business Jet Configuration. Comparison of Euler and Navier-Stokes Designs.
M =0.82,C, =0.35

108 Hicks-Henne variables. Spar Constraints Active.

- - -, Navier-Stokes Pressures for Euler Based Design.

—, Navier-Stokes Pressures for Navier-Stokes Based Design.
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6a: Original Load Balancing Scheme. 6b: Improved Load Balancing Scheme.

Figure 6: Parallel Speedup for Benchmark Mesh Using the IBM SP2 in User Space Mode
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7a: Original Load Balancing Scheme. 7b: Improved Load Balancing Scheme.

Figure 7: Parallel Speedup for Benchmark Mesh Using the IBM SP2 in Internet Protocol Mode
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8b: Improved Load Balancing Scheme.

Figure 8: Parallel Speedup for Benchmark Mesh Using the HP Cluster with Switched-100BaseT Fast
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9a: Comparison Between IBM SP2 US and IP Modes
for the Benchmark Mesh.

9b: Parallel Speedups for Fine Mesh.

Figure 9: Parallel Speedup Comparison Results for Benchmark and Fine Meshes
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